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Excitations and theS-matrix for an su(3) spin chain
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50009 Zaragoza, Spain
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Abstract. The associated Hamiltonian for ansu(3) spin chain combining{3} and {3∗}
representations is calculated. The ansatz equations for this chain are obtained and solved in
the thermodynamic limit, and the ground state and excitations are described. Thus, relations
between the number of roots and the number of holes in each level have been found. The excited
states are characterized by means of these quantum numbers. Finally, the exactS-matrix for a
state with two holes is found.

1. Introduction

The Yang–Baxter equation (YBE) [1, 2] and the quantum inverse scattering method (QISM)
[3] have contributed to the discovery and solution of numerous many-body quantum systems.
The best known system is the Heisenberg model, which was solved by Bethe [4]. This model
can be derived from the YBE using thesu(2) Lie algebra. Generalizations of this model
have been obtained using other Lie algebras [5–7].

An interesting problem is the derivation of integrable models where the chain is formed
by two kinds of state. The original work, an alternating chain withs = 1/2 and s = 1,
was presented in [8]. Later, several works, using several Lie algebras, were studied [9]. In
these systems it is possible to solve the ansatz equations in the thermodynamic limit [10].
This allows one to describe the system by means of quantum numbers and therefore one is
able to find the ground state and the excited states [11–13]. Moreover, theS-matrix for the
scattering of excitations can be determined [14–21].

In this paper we use thesu(3) rational solutions of the YBE and we form a chain
combining{3} and{3∗} representations. For the alternating chain we find the Hamiltonian,
which contains a coupling of three neighbouring site terms. We solve the ansatz equations
and we deduce the root and hole densities. The relations between these densities allow us
to describe the ground and excited states. In the last section we calculate the exactS-matrix
for two-hole scattering.

2. The model and the Hamiltonian

In this section, we construct an alternating chain that mixes the{3} and{3∗} representations
of su(3). We use the rational solutions of the YBE. If we take the{3} representation as
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auxiliary space and{3} as site space, we have the operator

L({3},{3})(u) = (1− iu)
3∑

j=1

ej,j ⊗ ej,j − iu
3∑

j,k=1
j 6=k

ej,j ⊗ ek,k +
3∑

j,k=1
j 6=k

ej,k ⊗ ek,j . (2.1)

For the{3} representation as auxiliary and{3∗} as site, the operator is

L({3},{3
∗})(u)=

(
1

2
− iu

) 3∑
j=1

ej,j ⊗ ej,j−
(

3

2
− iu

) 3∑
j,k=1
j 6=k

ej,j ⊗ ek,k−
3∑

j,k=1
j 6=k

ej,k ⊗ ej,k (2.2)

with (el,m)i,j = δl,iδm,j .
We consider a chain withN sites (N even) in which the site spaces are alternating in

the representations{3} and{3∗}. The monodromy matrix, which describes the transportation
along the chain, is defined by

Ta,b(u, α) = L({3},{3})a,a1
(u)L({3},{3

∗})
a1,a2

(u+ α) . . . L({3},{3})aN−2,aN−1
(u)L

({3},{3∗})
aN−1,b

(u+ α) (2.3)

where the indices are in the auxiliary space andα is an arbitrary parameter.
SinceL({3},{3})(u) andL({3},{3

∗})(u) operators verify the YBE, thenT (u, α) also verifies
it,

R(u− v) · (T (u, α)⊗ T (v, α)) = (T (v, α)⊗ T (u, α)) · R(u− v) (2.4)

with

R(u) = (1− iu)
3∑

j=1

ej,j ⊗ ej,j − iu
3∑

j,k=1
j 6=k

ej,k ⊗ ek,j +
3∑

j,k=1
j 6=k

ej,j ⊗ ek,k. (2.5)

Following standard procedure, we take the transfer matrix as the trace, on the auxiliary
space, of the monodromy matrix

F(u, α) = trace[T (u, α)]. (2.6)

Due to the YBE, the transfer matrices commute for different values of the argument

[F(u, α), F (v, α)] = 0. (2.7)

The Hamiltonian of this system is defined by the first derivative of the transfer matrix,

H(α) = d

du
lnF(u, α)|u=0 . (2.8)

Collecting the diverse terms, the Hamiltonian becomes

H(α) = i

ρ̄(α)

N−1∑
j=1
j odd

h
[1]
j,j+1+

i

c1ρ̄(α)

N−1∑
j=1
j odd

h
[2]
j,j+1,j+2 (2.9)

with

(h
[1]
j,j+1)a,b;β,γ = [L̇({3},{3

∗})
a,c (α)]β,δ[L

({3∗},{3})
δ,γ (−α)]c,b (2.10a)

(h
[2]
j,j+1,j+2)a,b;β,γ ;c,d = [L({3},{3

∗})
a,e (α)]β,δ[L̇

({3},{3})
e,d (0)]c,f [L({3

∗},{3})
δ,γ (−α)]f,b (2.10b)

and

R(0) = c1I (2.11a)

[L({3},{3
∗})

a,b (u)]α,β [L({3
∗},{3})

β,γ (−u)]b,c = ρ̄(u)δa,cδα,γ . (2.11b)
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Thus, we find

H(α) = 2

9+ 4α2

{ N−1∑
i=1
i odd

8∑
a=1

λai ⊗ λ̄ai+1+
N∑
i=2
i even

8∑
a=1

λ̄ai ⊗ λai+1

+
N−1∑
i=1
i odd

8∑
a,b,c=1

(
3

2
da,b,c − αfa,b,c

)
λai ⊗ λ̄bi+1⊗ λci+2

+5+ 4α2

4

N−1∑
i=1
i odd

8∑
a=1

λai ⊗ I ⊗ λai+2

}
+ 41+ 12α(α + i)

9(9+ 4α2)
I (2.12)

where we have used the Gell–Mann matricesλ and λ̄ for the {3} and {3∗} representations,
respectively,da,b,c and fa,b,c being the structure constants ofSU(3). When α = 0, we
obtain the simplest case.

3. Diagonalization and ansatz equations

We have solved the chain that mixes the{3} and {3∗} representations ofsu(3), using the
method given in [9]. The eigenvalue of the transfer matrix is

3(u) = [a(u)]N3[b̄(u)]N
∗
3

r∏
j=1

g(µj − u)+ [b(u)]N3

r∏
i=1

g(u− µi)

×
{

[b̄(u)]N
∗
3

s∏
l=1

g(λl − u)+ [ā(u)]N
∗
3

s∏
k=1

g(u− λk)
r∏
n=1

1

g(u− µn)
}

(3.1)

and the coupled Bethe equations are

[g(µk)]
N3 =

r∏
j=1
j 6=k

g(µk − µj)
g(µj − µk)

s∏
i=1

g(λi − µk) (3.2a)

[ḡ(λl)]
N∗3 =

r∏
j=1

g(λl − µj)
s∏
i=1
i 6=l

g(λi − λl)
g(λl − λi)

k = 1, . . . , r l = 1, . . . , s (3.2b)

with

a(u) = 1− iu (3.3a)

b(u) = −iu (3.3b)

ā(u) = 1

2
− iu (3.3c)

b̄(u) = 3

2
− iu (3.3d)

g(u) = a(u)

b(u)
(3.3e)

ḡ(u) = ā(u)

b̄(u)
. (3.3f)
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It is convenient to set the parametrization

µj = v(1)j −
i

2
(3.4a)

λj = v(2)j − i. (3.4b)

Using such a parametrization, the Bethe equations can be written as[
v
(1)
k − i/2

v
(1)
k + i/2

]N3

= −
r∏

j=1

v
(1)
k − v(1)j − i

v
(1)
k − v(1)j + i

s∏
l=1

v
(2)
l − v(1)k − i/2

v
(2)
l − v(1)k + i/2

(3.5a)

[
v
(2)
k + i/2

v
(2)
k − i/2

]N∗3
= −

r∏
j=1

v
(2)
k − v(1)j − i/2

v
(2)
k − v(1)j + i/2

s∏
l=1

v
(2)
l − v(2)k − i

v
(2)
l − v(2)k + i

. (3.5b)

We define the function

φ(x) = ln
1+ ix

1− ix
≡ 2i arctanx (3.6)

and taking logarithms in (3.5a) and (3.5b) we obtain

N3φ(2v
(1)
k )−

r∑
j=1

φ(v
(1)
k − v(1)j )+

s∑
l=1

φ(2v(1)k − 2v(2)l ) = 2πI (1)k 16 k 6 r (3.7a)

N∗3φ(2v
(2)
k )+

r∑
j=1

φ(2v(2)k − 2v(1)j )−
s∑
l=1

φ(v
(2)
k − v(2)l , γ ) = 2πI (2)k 16 k 6 s (3.7b)

whereI (1)k andI (2)k are half-integers.
In the thermodynamic limitN → ∞, the roots tend to have continuous distributions.

Unlike what happens in other cases, we cannot distinguish between the roots coming from
the different types of representations; this is noted by simple inspection of the equations of
the ansatz. Therefore, we define two root densities, one for each level,

ρl(v
(l)
j ) = lim

N3→∞
1

N3(v
(l)

j+1− v(l)j )
l = 1, 2. (3.8)

Let

ZN3(v) =
1

2π

[
φ(2v)− 1

N3

r∑
j=1

φ(v − v(1)j )+ 1

N3

s∑
j=1

φ(2v − 2v(2)j )

]
(3.9a)

ZN∗3 (v) =
1

2π

[
φ(2v)− 1

N∗3

s∑
j=1

φ(v − v(2)j )+ 1

N∗3

r∑
j=1

φ(2v − 2v(1)j )

]
. (3.9b)

In the thermodynamic limit, the derivative of these functions are

σ1(v) ≡ d

dv
ZN3(v) ≈

N

N3
ρ1(v)+ 1

N3

N
(1)
h∑

h=1

δ(v − θ1
h) (3.10a)

σ2(v) ≡ d

dv
ZN∗3 (v) =

N

N∗3
ρ2(v)+ 1

N∗3

N
(2)
h∑

h=1

δ(v − θ2
h). (3.10b)

Using the approximation

lim
N→∞

1

N

∑
j

f (v
(k)
j ) '

∫
dλ f (λ)ρk(λ) (3.11)
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and performing the Fourier transform, we can solve the system of equations. Thus, we
write

σ1(v) = σ (o)1 (v)+ 1

N3
σ
(h)

1 (v) (3.12a)

σ2(v) = σ (o)2 (v)+ 1

N∗3
σ
(h)

2 (v) (3.12b)

whereσ (o)k (v) and σ (h)k (v) show the root contribution and hole contribution, respectively,
for the k-level. One finds

σ
(o)

1 (v) = 1

2π

∫ +∞
−∞

(
sinhα

sinh(3α/2)
+ N

∗
3

N3

sinh(α/2)

sinh(3α/2)

)
eiαv dα (3.13a)

σ
(o)

2 (v) = 1

2π

∫ +∞
−∞

(
sinhα

sinh(3α/2)
+ N3

N∗3

sinh(α/2)

sinh(3α/2)

)
eiαv dα (3.13b)

σ
(h)

1 (v) = 1

2π

{ N
(1)
h∑

h=1

ra(v − θ(1)h )−
N
(2)
h∑

h=1

rb(v − θ(2)h )

}
(3.13c)

σ
(h)

2 (v) = 1

2π

{ N
(2)
h∑

h=1

ra(v − θ(2)h )−
N
(1)
h∑

h=1

rb(v − θ(1)h )

}
(3.13d)

with

ra(x) =
∫ +∞
−∞

sinh(α/2)

sinh(3α/2)
eiαx−|α| dα (3.14a)

rb(x) =
∫ +∞
−∞

sinh(α/2)

sinh(3α/2)
eiαx+|α|/2 dα. (3.14b)

4. Ground state and excitations

Any physical state is characterized by two sets of roots satisfying the Bethe equations (3.5a)
and (3.5b). These roots can be complex and, moreover, we can find some modifications of
the distribution of roots (holes). So, we write the solutions of the Bethe equations as strings

v
(1)
k,(m) = v(1)k,M + im m = −M, . . . ,+M (4.1a)

v
(2)
k,(m) = v(2)k,M ′ + im m = −M ′, . . . ,+M ′. (4.1b)

An M-string has lengthM and containsM roots, which share the same real part. The
0-strings are real numbers. In order to find the equations for the centre of strings we
introduce (4.1a) and (4.1b) into (3.5a) and (3.5b) and multiply the Bethe equations for all
the roots of the same string. Using the appendix, we obtain

2N3 arctan
v
(1)
k,M

M + 1
2

= 2πQ(1)
k,M +

∑
M ′

ν
(1)
M′∑
j=1

ψM,M ′(v
(1)
k,M − v(1)j,M ′)

−
∑
M ′′

ν
(2)
M′′∑
l=1

φM,M ′′(v
(1)
k,M − v(2)l,M ′′) (4.2a)

−2N∗3 arctan
v
(2)
k,M

M + 1
2

= −2πQ(2)
k,M −

∑
M ′

ν
(2)
M′∑
j=1

ψM,M ′(v
(2)
k,M − v(2)j,M ′)
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+
∑
M ′′

ν
(1)
M′′∑
l=1

φM,M ′′(v
(2)
k,M − v(1)l,M ′′) (4.2b)

where ν(i)M is the number ofM-strings at leveli, and the numbersQ(1)
k,M andQ(2)

k,M are

integers or half-odd. They vary in the intervals|Q(1)
k,M | 6 Q(1)

max,M and|Q(2)
k,M | 6 Q(2)

max,M . In

order to obtainQ(1)
max,M andQ(2)

max,M , we define the functions

F
(1)
M (λ) = N3

π
arctan

λ

M + 1
2

− 1

2π

∑
M ′

ν
(1)
M′∑
j=1

ψM,M ′(λ− v(1)j,M ′)

+ 1

2π

∑
M ′′

ν
(2)
M′′∑
l=1

φM,M ′′(λ− v(2)l,M ′′) (4.3a)

F
(2)
M (λ) = N∗3

π
arctan

λ

M + 1
2

− 1

2π

∑
M ′

ν
(2)
M′∑
j=1

ψM,M ′(λ− v(2)j,M ′)

+ 1

2π

∑
M ′′

ν
(1)
M′′∑
l=1

φM,M ′′(λ− v(1)l,M ′′). (4.3b)

Equations (4.2a) and (4.2b) can be written as follows:

F
(1)
M (v

(1)
j,M) = Q(1)

k,M (4.4a)

F
(2)
M (v

(2)
j,M) = Q(2)

k,M. (4.4b)

Note thatF (1)M (λ) andF (2)M (λ) are increasing functions ofλ, so we deduce that

F
(1)
M (−∞) 6 Q(1)

k,M 6 F
(1)
M (+∞) (4.5a)

F
(2)
M (−∞) 6 Q(2)

k,M 6 F
(2)
M (+∞). (4.5b)

The total number of allowedQ(i)
k,M will be

2Q(i)
max,M + 1= 2F (i)M (+∞). (4.6)

If we denote byH(i)
M the number of holes in the sea ofM-strings at leveli, then we have

2Q(i)
max,M + 1= ν(i)M +H(i)

M (4.7)

because the total number of allowedQ(i)
k,M corresponds to the sum of roots and holes.

Taking the limit whenλ tends to infinity in (4.3a) and (4.3b) and using (4.6) and (4.7)
we get

ν
(1)
M +H(1)

M = N3− 2
∑
M ′>0

J (M,M ′)ν(1)M ′ + 2
∑
M ′′>0

K(M,M ′′)ν(2)M ′′ (4.8a)

ν
(2)
M +H(2)

M = N∗3 − 2
∑
M ′>0

J (M,M ′)ν(2)M ′ + 2
∑
M ′′>0

K(M,M ′′)ν(1)M ′′ (4.8b)

with

J (M1,M2) =
{

2M1+ 1
2 if M1 = M2

2 min(M1,M2)+ 1 if M1 6= M2
(4.9a)

K(M1,M2) =
{
M2+ 1

2 if M2+ 1
2 6 M1

M1+ 1
2 if M2+ 1

2 > M1.
(4.9b)
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If Nρ is the number of statesρ in the chain, then, as we have shown in a recent paper [22],

Nu−Nū = N3− r (4.10a)

Nd−Nd̄ = r − s (4.10b)

Ns−Ns̄ = s −N∗3 . (4.10c)

On the other hand, the total number of strings isr and s at the first and second levels,
respectively, that is

r =
∑
M>0

(2M + 1)ν(1)M (4.11a)

s =
∑
M>0

(2M + 1)ν(2)M (4.11b)

whereM is integer or half-odd. Applying (4.8a) and (4.8b) for the real roots, and using
(4.9a) and (4.9b), we find

H
(1)
0 = N3− 2

∑
M ′>0

ν
(1)
M ′ +

∑
M ′′>0

ν
(2)
M ′′ (4.12a)

H
(2)
0 = N∗3 − 2

∑
M ′>0

ν
(2)
M ′ +

∑
M ′′>0

ν
(1)
M ′′ . (4.12b)

For the general case, this relation can be written as

ν(1)n −
ν(2)n

2
+H(1)

n =
H
(1)
n−1/2+H(1)

n+1/2

2
(4.13a)

ν(2)n −
ν(1)n

2
+H(2)

n =
H
(2)
n−1/2+H(2)

n+1/2

2

n = 0,
1

2
, 1,

3

2
, 2, . . . (4.13b)

where we have usedH(1)
−1/2 ≡ N3 andH(2)

−1/2 ≡ N∗3 .
Now, we can characterize the ground state and the excited states.
(i) Ground state. In the ground state we have no holes and only real roots. That is

ν
(1)
0 =

2N3+N∗3
3

(4.14a)

ν
(2)
0 =

N3+ 2N∗3
3

(4.14b)

ν
(1)
M>0 = ν(2)M>0 = H(1)

M>0 = H(2)
M>0 = 0 (4.14c)

and the quantum numbers are

Nu−Nū = Nd−Nd̄ = Ns−Ns̄ = N3−N∗3
3

. (4.15)

Then, the ground state is formed by pairs uū, dd̄ and s̄s.
(ii) Excited state with the same quantum numbers. This is characterized by one hole and

one two-string in each level,

ν
(1)
0 =

2N3+N∗3
3

− 2 (4.16a)

ν
(2)
0 =

N3+ 2N∗3
3

− 2 (4.16b)

ν
(1)
1/2 = ν(2)1/2 = H(1)

0 = H(2)
0 = 1 (4.16c)

ν
(1)
M>1/2 = ν(2)M>1/2 = H(1)

M>0 = H(2)
M>0 = 0 (4.16d)
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and the quantum numbers are as in (4.15).
(iii) Excited state with other quantum numbers. We can find an excited state

characterized by two holes, one in each level, and real numbers, that is

ν
(1)
0 =

2N3+N∗3
3

− 1 (4.17a)

ν
(2)
0 =

N3+ 2N∗3
3

− 1 (4.17b)

H
(1)
0 = H(2)

0 = 1 (4.17c)

ν
(1)
M>0 = ν(2)M>0 = H(1)

M>0 = H(2)
M>0 = 0. (4.17d)

Here, the quantum numbers are

Nu−Nū = N3−N∗3
3

+ 1 (4.18a)

Nd−Nd̄ =
N3−N∗3

3
(4.18b)

Ns−Ns̄ = N3−N∗3
3

− 1. (4.18c)

There are four ways to obtain this state from the ground state: the first is when a d-site
changes to a u-site and ad̄-site changes to an̄s-site; the second when we have a change
from a ū to a d̄-site and an s- to a d-site; the third is a change from an s to a u, and the
fourth is a change from āu to ans̄.

The next excited states have more that two holes, and they can be found by using
(4.11)–(4.13).

5. S-matrix

In this section we are going to find theS-matrix for the excitations over the ground state.
For this purpose we will use the transfer matrixF̄ (u, γ ), which is obtained by taking the
{3∗} representation in the auxiliary space. Thus, we define

T̄α,β(u, γ ) = L({3∗},{3})α,α1
(u+ γ )L({3∗},{3∗})α1,α2

(u) . . . L({3
∗},{3})

αN−2,αN−1
(u+ γ )L({3∗},{3∗})αN−1,β

(u) (5.1)

and the transfer matrix is

F̄ (u, γ ) = trace[T̄ (u, γ )]. (5.2)

From the YBE we have that

[T (u, γ ), T̄ (v,−γ )] = 0. (5.3)

We take the simplest case, that isγ = 0.
The eigenvalue ofF̄ (u, 0) is

3̄(u) = [a(u)]N
∗
3 [b̄(u)]N3

r̄∏
j=1

g(µ̄j − u)+ [b(u)]N
∗
3

r̄∏
i=1

g(u− µ̄i)

×
{

[b̄(u)]N3

s̄∏
l=1

g(λ̄l − u)+ [ā(u)]N3

s̄∏
k=1

g(u− λ̄k)
r̄∏
n=1

1

g(u− µ̄n)
}

(5.4)
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and, using the parametrization (3.4), the ansatz equations can be written as[
v̄
(1)
k − i/2

v̄
(1)
k + i/2

]N∗3
= −

r̄∏
j=1

v̄
(1)
k − v̄(1)j − i

v̄
(1)
k − v̄(1)j + i

s̄∏
l=1

v̄
(2)
l − v̄(1)k − i/2

v̄
(2)
l − v̄(1)k + i/2

(5.5a)

[
v̄
(2)
k + i/2

v̄
(2)
k − i/2

]N3

= −
r̄∏

j=1

v̄
(2)
k − v̄(1)j − i/2

v̄
(2)
k − v̄(1)j + i/2

s̄∏
l=1

v̄
(2)
l − v̄(2)k − i

v̄
(2)
l − v̄(2)k + i

. (5.5b)

However, the commutation of the transfer matrices in (5.3) requires that the Bethe equations
(3.5) and (5.5) are the same. Thus, we have

v̄
(1)
j = v(2)j j = 1, . . . , r̄ = s (5.6a)

v̄
(2)
k = v(1)k k = 1, . . . , s̄ = r. (5.6b)

In order to calculate the momentum of the chain, we consider an alternating chain, that
is N3 = N∗3 = N/2. Then, the momentum is

P = i ln[ ρ̄(0)−N/23(0)3̄(0)]. (5.7)

With (3.1), (3.4a), (3.4b), (5.4) and (5.6a), (5.6b) we have

P = i
r∑

j=1

ln
v
(1)
j − i/2

v
(1)
j + i/2

+ i
s∑
k=1

ln
v
(2)
k − i/2

v
(2)
k + i/2

. (5.8)

Using the approximation (3.11) and the root densities (3.13), we get

P = P0+
N
(1)
h∑

h=1

p(θ
(1)
h )+

N
(2)
h∑

h=1

p(θ
(2)
h ) (5.9)

whereP0 is the momentum of the ground state and the other terms are the hole contributions,
with

p(θ) = 1

2

∫ +∞
−∞

dx
sinhx + sinh(x/2)

ix sinh(3x/2)
eixθ . (5.10)

We calculate theS-matrix for the scattering of two holes. Here we follow the Korepin–
Andrei–Destri method [23–25]. For a state of two holes with rapiditiesθ1 and θ2, the
momentump(θ1) verifies the quantization condition

eip(θ1)NS = 1. (5.11)

The S-matrix can be written asS = ei8, so we have

p(θ1)+ 1

N
8 = 2π

N
n (5.12)

wheren is an integer.
One can prove by direct calculation that

p(θ) = π
∫ θ

−∞
σ
(o)

1 (λ) dλ+ c1 (5.13)

wherec1 is a constant, which will be irrelevant for our problem. From (3.10a) we can write

ZN/2(θ) =
∫ θ

−∞
σ1(λ) dλ+ c2 (5.14)

wherec2 is an irrelevant constant.
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Evaluating for a hole in the first levelθ1 we have

ZN/2(θ1) = I (h)

N/2
. (5.15)

With the relations (5.13)–(5.15) we deduce

p(θ1) = 2π

N
I(h) − 2π

N

∫ θ1

−∞
σ
(h)

1 (λ) dλ+ constant. (5.16)

Comparing (5.12) with (5.16), we conclude that

8 = 2π
∫ θ1

−∞
σ
(h)

1 (λ) dλ+ constant. (5.17)

We remove the constants because they contribute as a rapidity-independent phase factor.
Thus we have to calculate

8(θ) = −2
∫ ∞

0

dα

α

sinh(α/2)

sinh(3α/2)
eα/2 sin(αθ) (5.18)

where θ = θ1 − θ2 is the difference of rapidities of the two holes. This integral can be
solved by means of the9-function

9(x) = d

dx
ln0(x) (5.19)

and we get

d8

dθ
= 1

3

[
−9

(
1

6
− i
θ

3

)
+9

(
1

2
− i
θ

3

)
−9

(
1

6
+ i
θ

3

)
+9

(
1

2
+ i
θ

3

)]
. (5.20)

For the correspondingS-matrix we have

S1(θ) =
0( 1

6 − iθ/3)0( 1
2 + iθ/3)

0( 1
6 + iθ/3)0( 1

2 − iθ/3)
. (5.21)

For the state with one hole and one two-string in each level we find the scattering matrix
to be

S2(θ) =
( 1

2 − iθ)

( 1
2 + iθ)

0( 1
6 − iθ/3)0( 1

2 + iθ/3)

0( 1
6 + iθ/3)0( 1

2 − iθ/3)
. (5.22)

In order to calculate theS-matrix for holes in the same level we consider states with at least
four holes (two in each level). Following the same procedure, we find for two holes in the
first (second) level

S3(θ) =
0( 2

3 − iθ/3)0(1+ iθ/3)

0( 2
3 + iθ/3)0(1− iθ/3)

(5.23)

whereθ = θ(1)1 − θ(1)2 (θ = θ(2)1 − θ(2)2 ). TheS1 andS3 matrices coincide with those for the
non-alternating chain. This shows that the scattering is the same in the alternating and the
non-alternating chain [6].
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Appendix

We define the function

V0(x) = x − i

x + i
. (A.1)

It is easy to prove the relations

M∏
m=−M

V0(2x + i2m) = V0

(
x

M + 1
2

)
(A.2a)

M∏
m=−M

V0(x + im) = V0

( x
M

)
V0

(
x

M + 1

)
≡ VM(x) (A.2b)

M1∏
m1=−M1

M2∏
m2=−M2

V0(x + i(m1+m2)) =
M1+M2∏

L=|M2−M1|
VL(x) ≡ VM1,M2(x) (A.2c)

M1∏
m1=−M1

M2∏
m2=−M2

V0(2x + i2(m1+m2)) =
M1∏

m1=−M1

V0

(
x + im1

M2+ 1
2

)
≡ WM1,M2(x). (A.2d)

It is convenient to define the functions

ψM1,M2(x) = 2
M1+M2∑

L=|M2−M1|

(
arctan

x

L
+ arctan

x

L+ 1

)
(A.3a)

φM1,M2(x) = 2
M1∑

L=−M1

arctan

(
x + iL

M2+ 1
2

)
(A.3b)

which are connected with (A.2c) and (A.2d) by the logarithm.
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[11] Gómez C, Ruiz-Altaba M and Sierra G 1996Quantum Groups in Two-Dimensional Physics(Cambridge:

Cambridge University Press)
[12] Faddeev L and Takhtajan L A 1984 J. Sov. Math.24 241
[13] Faddeev L 1987Lectures in Quantum Inverse Scattering Method (Nankay Lectures on Mathematical Physics)

ed Song Xing-Chang (Singapore: World Scientific)
[14] Mezincescu L and Nepomechie R I 1994 ExactS matrices for integrable quantum spin chains UTMG-180

(hep-th/9501109)
[15] Fendley P and Saleur H 1994Nucl. Phys.B 428 681
[16] Shankar R and Witten E 1978Phys. Rev.D 17 2134
[17] de Vega H J, Mezincescu L and Nepomechie R I 1994J. Mod. Phys.B 8 3473
[18] de Vega H J, Mezincescu L and Nepomechie R I 1994Phys. Rev.B 49 13 223
[19] Aladim S R and Martins M J 1993J. Phys. A: Math. Gen.26 L529



2280 J Abad and M R´ıos

[20] Aladim S R and Martins M J 1993J. Phys. A: Math. Gen.26 7287
[21] Martins M J 1993J. Phys. A: Math. Gen.26 7301
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