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Abstract. The associated Hamiltonian for an:(3) spin chain combining{3} and {3*}
representations is calculated. The ansatz equations for this chain are obtained and solved in
the thermodynamic limit, and the ground state and excitations are described. Thus, relations
between the number of roots and the number of holes in each level have been found. The excited
states are characterized by means of these quantum numbers. Finally, th§-exacix for a

state with two holes is found.

1. Introduction

The Yang—Baxter equation (YBE) [1, 2] and the quantum inverse scattering method (QISM)
[3] have contributed to the discovery and solution of numerous many-body quantum systems.
The best known system is the Heisenberg model, which was solved by Bethe [4]. This model
can be derived from the YBE using tha(2) Lie algebra. Generalizations of this model
have been obtained using other Lie algebras [5-7].

An interesting problem is the derivation of integrable models where the chain is formed
by two kinds of state. The original work, an alternating chain wite= 1/2 ands = 1,
was presented in [8]. Later, several works, using several Lie algebras, were studied [9]. In
these systems it is possible to solve the ansatz equations in the thermodynamic limit [10].
This allows one to describe the system by means of quantum numbers and therefore one is
able to find the ground state and the excited states [11-13]. Moreoves;rtiarix for the
scattering of excitations can be determined [14-21].

In this paper we use theu(3) rational solutions of the YBE and we form a chain
combining{3} and{3*} representations. For the alternating chain we find the Hamiltonian,
which contains a coupling of three neighbouring site terms. We solve the ansatz equations
and we deduce the root and hole densities. The relations between these densities allow us
to describe the ground and excited states. In the last section we calculate th&§-enatcix
for two-hole scattering.

2. The model and the Hamiltonian

In this section, we construct an alternating chain that mixeg3hand{3*} representations
of su(3). We use the rational solutions of the YBE. If we take {3 representation as
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auxiliary space and3} as site space, we have the operator

3 3 3
LEB ) = (1 —in) ZeN ®ejj—iu Z e ®err+ Z ejx D e (2.1)
j=1 jk=1 jk=1
J#k J#k

For the{3} representation as auxiliary af@*} as site, the operator is

! 1\ 3 3 3 3
LEEY )= <§ - |u> Zej,j Rejj— (E — Iu) Z e ® exx— Z e e (2.2)
=1

J.k=1 jok=1
Jj#k J#k
With (e;m)i,j = 81,i0m, ;-

We consider a chain wittv sites (v even) in which the site spaces are alternating in
the representation8} and{3*}. The monodromy matrix, which describes the transportation
along the chain, is defined by
Top(u,0) = L&) LD @ o) LB )LD 1 g (2.3)
where the indices are in the auxiliary space ang an arbitrary parameter.

Since L3-8) 1) and L33V () operators verify the YBE, thefi (u, ) also verifies
it,

R —v) - (T, ) ®T(v,a)) = (T(v,a) ® T(u,x)) - R(u — v) (2.4)
with

3 3 3
R(u)=A—iu) Zej,j Qejj— iu Z ek Qe+ Z e ® ek (2.5)
j=1 k=1 k=1
Jj#k Jj#k
Following standard procedure, we take the transfer matrix as the trace, on the auxiliary
space, of the monodromy matrix

F(u, @) = trace[l (u, a)]. (2.6)
Due to the YBE, the transfer matrices commute for different values of the argument
[F(u,a), F(v,a)] = 0. (2.7)
The Hamiltonian of this system is defined by the first derivative of the transfer matrix,
d
H@)=—InFu,a)|,—- (2.8)
du
Collecting the diverse terms, the Hamiltonian becomes
i N-1 " | N-1 2l
He)==5 ; hint 5w ; hijjv2 (2.9)
Jjodd jodd
with
W Dasspy = (LD @) L (—))es (2.108)
(h,[-,z}H,Hg)a,b;ﬂ,y;c,d = [Lgﬂi}"?‘”(a)],s.a[LZfi}’{s}) (0)]c,f[LL(s{j,*}’{3})(—a)]f,b (2.1M)
and
R©) = c11 (2.118)

LD @)L (i) = 5(W)S0.cb0y- (2.11b)
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Thus, we find

2 N-1 8 ~ N 8
HO = g D s el Y Yk e,
9+40[ i=1 a=1 i=2 a=1
i odd ieven

N-1 8 3

+Z Z Eda,bc O‘fabc )“ ®)L,+1®)\,+2
i=1 a,b,c=1
i odd
54 4a? i3 & 414 120 (e + i)

MIRL _—1 2.12
+ 4 ; ; i ® ® l+2} + 9(9+4(12) ( )

where we have used the Gell-Mann matrigeand  for the {3} and {3*} representations,
respectively,d, , . and f,, . being the structure constants 8 (3). Whenao = 0, we
obtain the simplest case.

3. Diagonalization and ansatz equations

We have solved the chain that mixes #8 and {3*} representations ofu(3), using the
method given in [9]. The eigenvalue of the transfer matrix is

A@w) = [a@)]™[b)]™ H gy — u) + [b)]™ _]"[g(u — 147)

{[b(w]Na ngz —u) +[a()]" ]‘[g(u — A 1‘[ P } (3.1)
and the coupled Bethe equations are
[l = H £l = 1) Hg(x ) (3.22)
18—
/#k
8§Ahi —Ap)
[20)] = 1_[8()»1 ) H P
t;él
k=1 ...,r =1 ...,s (3.20)
with
a(w) =1—iu (3.3
bu) = —iu (3.3)
a(u) = % —iu (3.%)
&ng—m (3.3)
_aw
gu) = b (3.39)
g = 2 (3.3)



2272 J Abad and M Rjs

It is convenient to set the parametrization

w=v - 5 (3.40)
ao=v? —i. (3.40)
Using such a parametrization, the Bethe equations can be written as
[v;y i /zr B f[ W@ o 2 o
NONEY v oD <1> it v? —o® +i2 '
[ (2)+|/2j| 3‘__1_[ v® — (1) I/Zﬁ (2)—v,E2) i a5)
,(f) —i/2 =1 v,ﬁz) (1) +i/2 .1 v1(2> (2) +| '

We define the function
¢(x)=1In 1 ix = 2iarctamx (3.6)
X

and taking logarithms in (Sa) and (35b) we obtain

Nap(2v") = > o — o)+ > v — 202) = 27 1Y 1<k<r (373

N3p@u) + Y @ —20") =Y o — v ) =27?  1<k<s (37M)
=1

=1

where/® and 1 are half-integers.

In the thermodynamic limitv — oo, the roots tend to have continuous distributions.
Unlike what happens in other cases, we cannot distinguish between the roots coming from
the different types of representations; this is noted by simple inspection of the equations of
the ansatz. Therefore, we define two root densities, one for each level,

1

0]
;Ol(v )= I3I~>oo ]\]3(1)(1)—(1)) =12 (38)
Let
Zi) = | p20) — = imv S ijqﬁ(zv - 20?) (3.9)
s 27'[ N3 = J N3 = J :
2 D
Zy;(v) = [qb(z )——Z¢<v—v )+ Z¢(2v 2v] )}. (3.%)
In the thermodynamic I|m|t, the derivative of these functions are
d 10
01(v) = - Zns (v) ~ —pl(v) + Zaw —6) (3.108)
d N 1N
= — * —_— —_— p— 2
720 = G, 2w (0) = e®) + g ) 80 —6). (3.10)

Using the approximation

o1
Jim ,Z f) = / di f (o (1) (311)
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and performing the Fourier transform, we can solve the system of equations. Thus, we
write

o1(v) = 0,7 (v) + ; o (v) (3.12)
o2(v) = 03" (v) + Nl a3” (v) (3.120)
3

whereok”)(v) and akh)(v) show the root contribution and hole contribution, respectively,
for the k-level. One finds

@ i/*o" sinha N3 sinba/2) \ .,
o W) = 27 sinh(3a/2) TN, N3 sinh(3x/2) e da (3.1%)
© _i/*“( sinha N3 smh(a/2)> i
0" () = o snGa/d T N; S € do (3.1%)
1 N(l) N;SZ)
al(h)(v) 2—{ rg(v — 9,51)) — Z rp(v — 0}(12))} (3.1%)
h=1
1 N(Z) N;Sl)
o (v) = Z{ ra—62) = (v — 9;,1))} (3.13)
h=1
with
+00 o
ra(x) = / %é”'“'m (3.1%)
+00 i
rp(x) = / %é““wzdw (3.1%)

4. Ground state and excitations

Any physical state is characterized by two sets of roots satisfying the Bethe equattns (3
and (35b). These roots can be complex and, moreover, we can find some modifications of
the distribution of roots (holes). So, we write the solutions of the Bethe equations as strings

vlilgm) - UIElZ)VI +im m=-M,...,+M (413.)
v =v@, +im  m=—M, ... +M (4.1b)

An M-string has lengthf and containsM roots, which share the same real part. The
O-strings are real numbers. In order to find the equations for the centre of strings we
introduce (41a) and (41b) into (3.54) and (35b) and multiply the Bethe equations for all

the roots of the same string. Using the appendix, we obtain

( 1) (1)

2N3 arCtanﬁ =2 Q(l) + Z Z wM M’(vlglj)\/[ — UJ(]X,I )
2

(2)

1 2

—ZquMM (v — v (4.28)
M" 1=
@ vy
Vk,m ) @ @

—2Nj arctanM—_i_l —27TQ Z Z Y (v — v;’ )

2 " =1
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(1)
+> Z P (0 — Vi) (4.20)
M=
where v} is the number of¥-strings at leveli, and the numberg{",, and Q}fﬂw are

integers or half-odd. They vary in the interva8("),| < O'vy, and| 0P}, | < 0%

max M maxM*
order to obtameTffixM and Qrf;xM, we define the functions
@
N3 A 1 & 1
FP() = —arctan——— — — (=0,
W) =— Mt 1 Zn;;w,m )
(2)
U 2)
Z Z dmmr (A — U/( ) (4.39)
- (2)
N3 A
Fi? (1) = =2 arctan——— — (h— v(2>
) = it l Z ; Y ( )
(1)
+— Z Z(bM wr (= V). (4.30)
Equations (42a) and (42b) can be written as follows:
F(l)( @y = <1> (4.48)
F(Z)(v(z) ) = <2> (4.4p)
Note thatF,f,,l) () and F(Z)(A) are increasing functions of, so we deduce that
Fif' (=00) < 0 < Fyp (+00) (4.59)
Fif (—00) < Q%) < Fyf (+00). (4.50)
The total number of aIIowe(Q(’) will be
200y +1=2F) (+00). (4.6)
If we denote byHlf,’f the number of holes in the sea df-strings at level, then we have
200w+ 1=y + H) @.7)

because the total number of alIoin_M corresponds to the sum of roots and holes.
Taking the limit wheni tends to infinity in (43a) and (43b) and using (4.6) and (4.7)
we get

vi + Hp =Ng—2 Y J(M, M) +2 3" KM, M7, (4.89)
M’'>0 M">0
i + HyY = Nj =23 J(M, MWE +2 Y KM, M")yy), (4.80)
M'>0 M">0
with
2My + 3 if My= M,
J (M1, Mp) = 2 . (4.9)
2min(My, Mo) + 1 if My #£ M,
My + 1 if Mp+ 1< M
K (My, M) = i : (4.%)
M1+§ |fM2+§>M1.
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If N, is the number of states in the chain, then, as we have shown in a recent paper [22],

Ny— Ng=N3z—r (4.10m)
Nyg— Nyg=r—s (4.10)
Ns— Ns =5 — Nj. (4.1@)

On the other hand, the total number of strings-iand s at the first and second levels,
respectively, that is

r=> M+ vy (4.119)
M=0

s= ) @M+ Hy? (4.11b)
M=>=0

where M is integer or half-odd. Applying (8z) and (48b) for the real roots, and using
(4.92) and (49b), we find

HP =Ng—2 Y vB+ 3 2 (412)
M'>0 M">0
HP =N3—2) v+ ) vy (4.120)
M'>0 M">0
For the general case, this relation can be written as
e HD ,+HY
p® I g g o Ttz erl2 (4.13)
2 2
) @
L@ v L H® = H, "5+ H o
" 2 " 2
1.3
n=0-,1-,2,... 4.1
> L3 (4.1%)

where we have use#f? , = Ns and H? , = N,

Now, we can characterlze the ground state and the excited states.
(i) Ground state In the ground state we have no holes and only real roots. That is

v(l) _ 2N3 + N;

o= (4.140)
W@ = N +32N§ (4.10)
Vifho = Viro = H1E4l)>o = Hyp. >0 =0 (4.1%)
and the quantum numbers are
Ny— Nyg=Ng— Nj=Ns— Ns= % (4.15)

Then, the ground state is formed by paiis dd and §.
(ii) Excited state with the same quantum numb@itsis is characterized by one hole and
one two-string in each level,

(l) _ 2N3 + Nék

vy = 3 -2 (4.1&)
Na + 2N

WP =SS o (4.160)

vy =iy = Hy' = H? =1 (4.1&)

@ @

1) 2
Vis12 = Vs = Hylo = Hylo = 0 (4.16))
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and the quantum numbers are as in (4.15).
(i) Excited state with other quantum numhersWe can find an excited state
characterized by two holes, one in each level, and real numbers, that is

b _ 2N3 + N;

= 7 1 (4.17%)
N3+ 2N}

V@ = % -1 (4.1)

HY =H® =1 (4.17%)

Vz(v})>o = Vz(vio = H/E4l)>o = H/Eio =0. (4.1d)
Here, the quantum numbers are
N3 — N3

Nuy— Ng = %+1 (4.18)
N3 — N3

Ng— Ng=—2_13 3 3 (4.180)
N3 — N3

Ns— Ns = % -1 (4.18)

There are four ways to obtain this state from the ground state: the first is when a d-site
changes to a u-site anddasite changes to a&site; the second when we have a change
from a U to ad-site and an s- to a d-site; the third is a change from an s to a u, and the
fourth is a change from & to ans.

The next excited states have more that two holes, and they can be found by using
(4.11)—(4.13).

5. S-matrix
In this section we are going to find tiematrix for the excitations over the ground state.

For this purpose we will use the transfer matfiXu, y), which is obtained by taking the
{3*} representation in the auxiliary space. Thus, we define

Tup(u.y) = LI @+ ) LI Dy LMD g ) LITHD ) (5.1)
and the transfer matrix is
F(u,y) = trace[l (u, y)]. (5.2)
From the YBE we have that
[T, y), T, —y)]=0. (5.3)

We take the simplest case, thatyis= 0.
The eigenvalue of (u, 0) is

Au) = [a@)] V3 [b(u)]™ l_[g(/lj —u) + [b)] M Hg(u — i)

{[b(u)]’% l"lgm —u) +[a()]" Hg(u — ) 1"[ " } (5.4)
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and, using the parametrization (3.4), the ansatz equations can be written as

_(1) . N3 F (1) —(1) P —(2) —(1) ;
i/2 —1 —1/2
. =—|]- - - - (5.59)
[ @ +|/2} 1_! U}gl) (1> T 11_! U(Z) (1) +i/2
(2) + |/2 N3 ~ ﬁ (2) —(1) |/2 5 —(2) _ 17]52) i (5 a))
',ﬁz) —i/2 102 - (“ +i/214 v,@) o7 i '

However, the commutation of the transfer matrices in (5.3) requires that the Bethe equations
(3.5) and (5.5) are the same. Thus, we have

oY = v? j=1...,F=s (5.69)
52 = v k=1....5=r (5.60)

In order to calculate the momentum of the chain, we consider an alternating chain, that
is N3 = N3 = N/2. Then, the momentum is

P =iln[p(0)~"2A(0)A(0)]. (5.7)
With (3.1), (34a), (3.4b), (5.4) and (%6a), (5.6b) we have
r (l) s (2)
- / . —i/2
=i Zln T +i Zln NCR (5.8)
=1 vo /2
Using the approximation (3.11) and the root densities (3.13), we get
N](,l) N(Z)
P="P+ Z pO>) + Z p62) (5.9)

where Py is the momentum of the ground state and the other terms are the hole contributions,
with

(5.10)

1 /*"de sinhx + sinh(x/2) i

r& =3/ ix sinh(3x/2)

We calculate theS-matrix for the scattering of two holes. Here we follow the Korepin—
Andrei—Destri method [23-25]. For a state of two holes with rapidifiesand 6,, the
momentump(6,) verifies the quantization condition

g@rovNg — 1, (5.11)
The S-matrix can be written as = €®, so we have
1 2n
p(01) + NCD = Wn (5.12)

wheren is an integer.
One can prove by direct calculation that

6
mm=nf P W) O+ ey (5.13)
—00
wherec; is a constant, which will be irrelevant for our problem. Fronl(®) we can write

0
hﬂ@=/ 010 dh + ¢ (5.14)

wherec; is an irrelevant constant.
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Evaluating for a hole in the first levéh we have

™
Znp2(01) = —. 5.15
ny2(01) N2 ( )
With the relations (5.13)—(5.15) we deduce
2 2 01
p(6y) = —nf o (3) di + constant (5.16)
N N J_«

Comparing (5.12) with (5.16), we conclude that
01
® =21 / o (1) dr + constant (5.17)

We remove the constants because they contribute as a rapidity-independent phase factor.
Thus we have to calculate

_ °°d_a sinh(a/2) /2 o
®O) = 2/0 a—sinh(&x/z)e* sin(ed) (5.18)

where6 = 6, — 6, is the difference of rapidities of the two holes. This integral can be
solved by means of th&-function

Y(x) = % InT"(x) (5.19)

and we get

2ol a) e () () o (eg)] e

For the corresponding-matrix we have
T'(3 —i0/3)I'( +10/3)
I +i6/3(3-i0/3)

For the state with one hole and one two-string in each level we find the scattering matrix
to be

S1(0) = (5.21)

(G —i0) NG —i0/3I (3 +i6/3)
~d+ierd+iearé —ie/3)’
In order to calculate th§-matrix for holes in the same level we consider states with at least

four holes (two in each level). Following the same procedure, we find for two holes in the
first (second) level

S»(0) (5.22)

I —io/3r1+i6/3)

S3(0) =
3(6) r+i0/3T(1—i6/3)

(5.23)

whereg = 6" — 6P (6 = 6,2 —6?). The s; and S3 matrices coincide with those for the
non-alternating chain. This shows that the scattering is the same in the alternating and the
non-alternating chain [6].
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Appendix

We define the function

x —i
Vi = . A.l
o(x) e (A1)
It is easy to prove the relations
M X
Vo(2x +i2m) = Vg (—) (A.2a)
ml_—[M M + %
M X X
Mo Mi+M>
H [T Vo +itmi+m =[] Vi) = Vi) (A.2¢)
mi=—My my=—M, L:|M27M1‘
x+im
H H Vo(2x + i2(my + m2)) = 1‘[ Vo ( 1) = W), (A2d)
ml_—Ml mpy=— Mz ml_—Ml M2 +
It is convenient to define the functions
M1+M> X X
Ungy m, (X) = 2L_ Z (arctanz + arctanL—H> (A.33)
=|Mz—M,|
ot a,(X) = 2 Z arctan| ~ 'L (A.3b)
My, M> - = M2 i % .

which are connected with (Ac2 and (A.27) by the logarithm.
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